Modélisation et dimensionnement de la partie solaire de la centrale solaire Sun2Power

DELTOUR Nicolas
LAURENT David
VRANCKEN Bruno

2012-2013
Table des matières

1 Introduction 5
 1.1 Avantages et inconvénients du cycle ORC vis-à-vis du cycle de Rankine 9
 1.2 Explications du choix d’une microcentrale 10
 1.3 Différentes microcentrales ORC à travers le monde 10

2 Choix du site 12
 2.1 Fonctionnement sans ombre 15
 2.2 Prise en compte de l’ombre 16
 2.2.1 Rupture de la symétrie 17
 2.2.2 Détermination des ombres 18
 2.2.3 Modélisation du capteur en un point 19
 2.2.4 Modélisation du capteur en quatre points 22
 2.3 Conclusions 23
 2.4 Un site supplémentaire, le site 7 26
 2.4.1 Comparaison avec le site 6 27

3 Étude sur la nébulosité 29

4 Système de stockage 34
 4.1 Introduction à la problématique du stockage 34
 4.2 Description brève du modèle 38
 4.3 Modélisation simple 41
 4.3.1 Stockage 42
 4.3.2 Déstockage 43
 4.4 Modélisation intermédiaire 45
 4.5 Modélisation élaborée 49
 4.6 Optimisation de la consigne de fin de déstockage 52
 4.7 Evolution des températures aux différents points de la boucle chaude 55
 4.8 Dimensionnement du réservoir 56
 4.9 Comparaison des résultats 60
 4.10 Étude de l’efficacité du stockage par rapport au passage des nuages 61
 4.11 Discussion sur la topologie 63
 4.11.1 Jeu de vanne 63
 4.11.2 Alternative aux vanne trois voies 66
 4.11.3 Pompe et vase d’expansion 66
5 Mesures des grandeurs thermofluides
5.1 Thermocouples .. 69
5.2 Pression .. 69
 5.2.1 Pression absolue ... 69
 5.2.2 Pression différentielle 70
5.3 Débitmètres ... 70
 5.3.1 Huile .. 71
5.4 Wattmètre .. 71
5.5 Indicateur de niveau .. 71
5.6 Pyrhéliomètre ... 72
5.7 Acquisitions des données 73
5.8 Système de suivi solaire 74
5.9 Inclinomètre .. 75
5.10 Anémomètre ... 76
5.11 Placement des instruments de mesure 77

6 Perspectives et conclusions ... 79

7 Références .. 80
 7.1 Bibliographie .. 80
 7.2 Webographie ... 80

Table des figures

1 Cycle ORC [4] ... 5
2 Cycle complet .. 7
3 Modèle de la Microcentrale Sun2Power 8
4 Coûts liés à la microcentrale Sun2Power 10
5 Données de microcentrales à travers le monde 11
6 Sites 1, 2 et 3 ... 12
7 Sites 4, 5 et 6 .. 13
8 Valeurs des paramètres de l’ensoleillement 14
9 Schéma logique du code [4] 15
10 Définition de l’azimuth .. 17
11 Rupture de la symétrie .. 18
12 Comparaison de β et β_{crit} 18
13 Relations trigonométriques dans les triangles 19
14 Ombre d’un bâtiment en pleine journée 20
15 Résultats de la modélisation en 1 point 21
16 Principe de la modélisation en un point et en quatre points 23
Liste des tableaux

1. Résultats numériques de la modélisation par un point 22
2. Résultats numériques de la modélisation par quatre points 23
3. Pourcentage d’ensoleillement malgré l’ombre 26
4. Synthèse des résultats du site 7 ... 27
5. Hypothèse principale de la modélisation simple 42
6. Cas pour lesquels le modèle de mélange s’applique 45
7. Récapitulatif des différents modèles 54
8. Détermination du volume en fonction de la quantité de chaleur à stocker ... 58
9. Résultats numériques variation du volume de stockage 61
1 Introduction

En ce début d’année académique, certains aspects de dimensionnement d’un projet innovant restent à réaliser. En effet, depuis 2010, des ingénieurs électromécaniciens de 1ère et 2ème master, supervisés par des professeurs et doctorants, travaillent sur le projet nommé Sun2Power. Ce projet a pour but d’installer une microcentrale solaire dans les environs de Marseille.

Sur base d’un cycle de Rankine organique (ORC), de l’électricité va être produite à partir d’une source thermique à température relativement faible, à savoir inférieure à 300°C. De l’huile est chauffée grâce à des collecteurs cylindro-paraboliques faisant office de miroirs en concentrant les rayons du soleil vers un absorbeur au travers duquel s’écoule cette huile. La chaleur accumulée par l’huile est transférée à un fluide de travail (R245fa) qui s’évapore via un échangeur de chaleur. La vapeur est ensuite détenue par deux compresseurs scrolls modifiés en expansateurs afin de créer de l’électricité. Un aérocondenseur (échangeur+ventilateurs) condense le fluide de travail pour que ce dernier passe dans la pompe de circulation. Le tout forme un cycle parcouru en continu, le cycle de Rankine Organique.

![Figure 1 – Cycle ORC [4]](image)

Les enjeux de ce projet sont multiples et variés. D’une part, il permet d’améliorer et de développer de nouvelles solutions pour produire de l’énergie « verte ». D’autre part, des solutions relatives à un problème réel pourront être trouvées, ce qui permet une bonne préparation au futur métier d’ingénieur.
Comme il a été introduit précédemment, le travail réalisé ici ne consiste qu’en une partie du projet. La mission consiste à modéliser la boucle chaude le plus précisément et le plus efficacement possible afin d’avoir une meilleure prédiction des résultats et d’en dimensionner certains composants. Ensuite, il faudra modéliser au mieux un système de stockage thermique et de l’intégrer dans le cycle.

La première partie du travail est liée au choix de l’emplacement de l’installation. Sur base de calculs qui prennent en compte l’ombre des bâtiments, il faut déterminer l’emplacement, selon un panel de six possibilités, qui présente un maximum d’énergie produite et d’heures d’ensoleillement.

Ensuite, tout un travail de recherches, de calculs et d’analyses permettra de trouver l’optimum relatif au nombre de collecteurs, le choix des tubes de circulation, la pompe, le vase d’expansion et le système de suivi solaire.

De plus, un système de stockage devra être élaboré afin de combler au mieux la perte d’irradiation due aux passages nuageux et de récupérer l’excédant d’irradiation solaire lors des heures les plus prolifiques (aux alentours de midi) dans le but de tirer parti au mieux de la source d’énergie.

Enfin, afin d’assurer en continu le bon fonctionnement de l’ensemble, et la sécurité aux alentours, nous avons dû intégrer des appareils de mesure.

Les rendements d’une telle centrale (microcentrale) sont moins bons que celles d’une centrale de plus grosse puissance mais, en contrepartie, l’investissement devrait être largement plus faible et donc, le système est beaucoup plus facile à mettre en place. En effet, de plus grosses centrales présentent de plus grosses pompes et turbines et une augmentation de la température d’évaporation, ce qui aura pour effet d’augmenter le rendement. En ce qui concerne la microcentrale étudiée, voici les quelques chiffres clés qui caractérisent le fonctionnement global en régime nominal :

- 2.5 kW de production électrique
- Rendement global avoisinant les 5%
- Rendement du cycle ORC de l’ordre de 8.5%
- Température de condensation de 35°C
- Température d’évaporation de 140°C

Certains lieux sont difficiles d’accès et donc onéreux à raccorder au réseau électrique. Ceci est notamment le cas en montagne ou dans les îles. Même en
Europe, il arrive que des régions reculées des pays tempérés soient dans cette situation. La technologie solaire thermodynamique pourrait donc tout autant s’y justifier.

Plus le terrain est accidenté, éloigné du réseau, plus il est intéressant d’utiliser une telle production d’énergie. Une étude de marché doit être réalisée afin de voir les gains à court et long terme.

Hormis ces installations, la production de courant basée sur l’énergie solaire peut servir, dans les pays dits chauds, pour différents domaines :

- La production de lumière permettant d’avoir une activité dans de bonnes conditions en début de soirée
- L’accès à l’information par la télévision et la radio
- Des besoins minimaux de réfrigération pour la conservation de médicaments
- La ventilation
- Le pompage et le traitement de l’eau
- Le fonctionnement de machines agricoles (moulin, machines à traire,...) facilitant les tâches ménagères

Il est cependant essentiel de former les habitants locaux aux technologies que l’on leur installe. En effet, si l’utilisateur n’a pas ou très peu dû financer le système, celui-ci est voué à un triste sort.

La modélisation et l’étude de la centrale thermique ont déjà été le sujet de différents projets intégrés ainsi que de travaux de fin d’études au sein de la faculté
des sciences appliquées de l’Université de Liège.

Tout d’abord, sur base d’un premier projet intégré a été réalisé un modèle d’ensoleillement complet afin de d’étudier la plausibilité de réalisation d’un tel projet. Sur base de certains paramètres comme l’orientation du système de suivi solaire par rapport à l’axe Nord-Sud et l’angle azimutal, le code fournit l’ensoleillement capté par les collecteurs \((I_{dn})\) avec \(N\) (le jour de l’année) et \(h\) (l’heure de la journée) en entrées du code.

Deuxièmement, en parallèle à ce projet, une étude a été réalisée sur la modélisation de l’ORC uniquement. Ces deux projets intégrés ont ensuite été couplés afin d’obtenir un modèle complet de la microcentrale.

Pour terminer, un travail de fin d’étude sur le calibrage et l’optimisation du modèle ORC sur base des paramètres fournis par les projets antérieurs a été effectué.

Il reste maintenant à mettre en œuvre la partie se référant à la modélisation et au dimensionnement de la partie solaire de la centrale thermique Sun2Power.

Figure 3 – Modèle de la Microcentrale Sun2Power
1.1 Avantages et inconvénients du cycle ORC vis-à-vis du cycle de Rankine

Un cycle ORC possède de nombreux avantages qui nous permettent de croire en son utilisation à long terme et à son développement :

- Simplicité par rapport au cycle de Rankine classique pour des températures et puissances faibles
- Un faible coût de maintenance et d’utilisation dû à une technologie ne nécessitant pas de travailler à des températures et pressions extrêmes
- Délais de développement et de construction courts
- Dimensionnement et montage simples et fiables
- Investissements faibles
- Vise à remplacer et/ou compléter les générateurs diesel des pays en développement n’étant pas connectés au réseau électrique (2 milliards de personnes concernées), par la production d’énergie propre tout en abaissant le coût moyen
- Couplage aisé avec des unités de désalinisation de l’eau grâce au phénomène d’osmose inverse
- Possibilité de coupler la microcentrale à un stockage d’énergie thermique
- Possibilité de produire de l’eau chaude simultanément

Malheureusement, une telle technologie n’a pas que des points positifs. Trois grands désavantages sont listés ci-dessous :

- La discontinuité de l’alimentation en énergie solaire due aux conditions météorologiques
- La faible densité du rayonnement solaire
- Les coûts élevés d’investissement en partie dus à l’utilisation de technologies spécifiques pour de petites séries

Afin de remédier à ces problèmes, il existe plusieurs solutions. En effet, il est possible d’utiliser des concentrateurs solaires et un ballon de stockage d’énergie thermique afin de réduire les problèmes liés au caractère intermittent de l’énergie solaire. Quant au troisième inconvénient énoncé ci-dessus, il faut espérer que le développement de microcentrales va augmenter afin d’atteindre des coûts d’investissement relativement concurrentiels. Il est également judicieux de se tourner vers l’utilisation de matériel produit en grand série.

Concernant les coûts, on peut comprendre qu’un projet de cette sorte n’est pas donné. Il a donc été décidé d’établir un listing complet (donné à la figure 4) reprenant les coûts liés aux projets précédents (repris sous le générique ORC) auxquels les parties concernant ce projet ont été ajoutées.
Il est donc légitime de constater que le domaine de la recherche et de l’innovation nécessite un budget conséquent.

1.2 Explications du choix d’une microcentrale

Les principales motivations pour la réalisation de ce projet ont été les suivantes :

- C’est une technologie nouvelle qui s’avère être compétitive avec le photovoltaïque malgré le peu de démonstrateurs en état de fonctionnement à l’heure actuelle. Un effet boule de neige peut-être espéré dans un futur afin de voir un vrai décollement
- Elle permet d’élaborer des stratégies de contrôle valables à petite échelle afin de les transposer à plus grande échelle de manière à augmenter l’efficacité
- C’est un projet pédagogique ayant permis à pas moins d’une dizaine d’étudiants de travailler sur un projet de longue durée tout en permettant à chacun de développer ses aptitudes à travailler en groupe

1.3 Différentes microcentrales ORC à travers le monde

Au vu de l’accent, de plus en plus prononcé, qu’il est nécessaire de mettre sur l’utilisation d’énergies renouvelables à travers le monde afin de lutter contre la consommation excessive de combustibles fossiles et les émissions de gaz à effet de serre, des recherches sur de nouvelles technologies ont fleuri un peu partout. Étant
donné la source inépuisable que constitue le soleil, il fut donc logique pour l’homme de se tourner vers cette énergie. Sur base de ces fondements, la technologie de cycle organique de Rankine (ORC) a su se développer et se démarquer pour les raisons déjà citées précédemment.

Cependant, après une recherche approfondie, l’innovation du projet fut mise en lumière. Différents projets d’autres universités/entreprises à travers le monde en cours de réalisation ou en état de fonctionnement ont été repris dans le tableau de la figure 5.

![Tableau de données de microcentrales à travers le monde](image)

Figure 5 – Données de microcentrales à travers le monde
2 Choix du site

La première mission de ce projet est de déterminer le site idéal au sens de la production. Afin de remplir cette tâche, il a fallu faire un choix parmi 6 sites (figures 6 et 7) différents choisis. Cependant, avant même de décrire la démarche réalisée pour estimer l’ombre, il est utile d’expliquer quelque peu comment fonctionne le code réalisé dans un projet intégré précédent (boucle chaude), code sur lequel se base le travail.

Jusqu’ici, pour des coordonnées géographiques données, il est possible de déterminer la production électrique annuelle pour autant que la présence des bâtiments, l’ombre qu’ils engendrent et la présence des nuages soient négligées. Aussi, les pertes à l’ambiance ont été négligées.

![Figure 6 – Sites 1, 2 et 3](image)

43°25'15.41"N 4°58'49.98"E

Figure 6 – Sites 1, 2 et 3
Figure 7 – Sites 4, 5 et 6
Les capteurs solaires à concentration cylindro-parabolique permettent de chauffer un fluide (de l’huile), lequel joue le rôle de source chaude dans le cycle de Rankine associé. Ce modèle est supposé connu puisqu’il a été fourni par le groupe de projet intégré qui travaillait sur le cycle de Rankine en 2010-2011 [3]. Ce modèle travaille, comme énoncé en introduction, entre des températures de condensation et d’évaporation constantes toute l’année (respectivement 35°C et 140°C). Des modifications auront lieu au cours de ce travail de manière à rendre la modélisation la plus réaliste possible.

Afin de quantifier la quantité de chaleur récupérée par l’huile, il faut quantifier d’abord l’irradiation solaire en W/m². Pour ce faire, le code se base sur l’interpolation des données numériques données par le tableau de la figure 8 et sur l’expression

\[I_{dn} = A e^{-B \sin \beta} \]

où A est la valeur de l’irradiation solaire sans diminution de l’intensité du rayonnement lors du passage à travers l’atmosphère et B un coefficient qui quantifie la diffusion réelle. Enfin, \(\beta \) est un angle qui correspond à l’altitude du soleil. C’est ce dernier paramètre, variant au cours de la journée, qui permet d’obtenir une valeur différente d’irradiation à chaque instant de la journée.

Figure 8 – Valeurs des paramètres de l’ensoleillement

Il ne reste alors qu’à déterminer \(\beta \) en fonction du moment de la journée. Pour ce faire, il existe des équations [7] qui lient l’heure angulaire, la latitude et la déclinaison solaire \(\delta \). Cette dernière est donnée en fonction du jour de l’année \(n \)

\[\delta = 23.45 \sin \left(\frac{360}{365} (n - 81) \right) \]

Ainsi, en jouant sur l’heure angulaire \(H \), pour chaque pas de temps, l’angle \(\beta \) et donc l’irradiation incidente peut être déterminée :

\[\sin \beta = \cos (\text{Lat}) \cos (\delta) \cos (H) + \sin (\text{Lat}) \sin (\delta) \]
Enfin, il ne faut pas oublier le facteur de concentration C propre à ce type de concentrateur. L’irradiation solaire vaut donc

$$I_{tot} = I_{Dn}(1 + C)$$

Ce facteur $1+C$ correspond à l’aire effective des miroirs reflétant le rayonnement direct du soleil.

En bref, la modélisation est réalisée sur base de données qui ne sont en rien liées à la présence de nuages ou d’ombre d’origine quelconque.

2.1 Fonctionnement sans ombre

![Figure 9 – Schéma logique du code [4]](image)

Le fonctionnement du code de départ se déroule comme suit, et, ce, pour des raisons de convergence de EES. Dans un premier temps, la valeur initiale du temps est le midi solaire puisqu’il est certain que le système produira de l’électricité à cet instant. Il faut, ensuite, calculer la quantité d’énergie électrique produite par le système entier sur le pas de temps considéré, puis il faut le décrémenteer vers le lever du soleil jusqu’à ce que le travail net produit soit inférieur à une valeur consigne déterminée pour les besoins de stabilité numérique du code, ce qui influence les résultats de manière négligeable. En effet, pour une irradiation solaire qui diminue de trop, il peut en résulter des divisions par des nombres très petits.
dans le reste du code rendant impossible la convergence du programme. Dans ce cas, les résultats obtenus sont doublés pour tenir compte de la symétrie journalière autour du midi solaire. La quantité d’énergie produite sur la journée est donc calculée et on passe au jour suivant.

En fonction du jour considéré, les valeurs des paramètres A et B ainsi que de la déclinaison solaire \(\delta \) varient. A partir de ces nouvelles valeurs, un calcul similaire est effectué et ce, pour chaque jour de l’année. Il est utile de noter qu’il existe également une symétrie autour des solstices si bien que l’on peut diviser le temps de calcul par deux en ne calculant ces valeurs que sur six mois.

Au final, le code nous sort trois différents résultats importants à connaître :

- Le nombre de kWh électriques générés sur une année
- Le nombre d’heures d’ensoleillement sur une année
- Les puissances électriques, de la pompe, de l’aérocondenseur et de l’expanser en temps réel

La suite du travail présente ces multiples résultats, principalement le premier, mais en prenant en compte l’ombre des bâtiments présente sur les six sites. Ainsi, il sera possible de déterminer quel site pourra accueillir l’installation de manière à produire le plus d’énergie électrique. En effet, même si la présence des nuages est négligée, il est clair qu’au vu de la proximité des six sites, la présence des nuages ne va pas en favoriser un par rapport aux autres.

2.2 Prise en compte de l’ombre

Dans cette section va être mise en avant la méthode permettant de prendre en compte l’influence des bâtiments. Tout d’abord, il faut repérer le soleil dans le plan relatif au site par le biais d’un angle qui n’a pas encore été défini dans ce travail : l’azimuth \(\phi \). Comme l’indique la figure 10, l’azimuth est défini par rapport au sud si bien qu’il y a une symétrie de la course du soleil autour de \(\phi = 0 \), soit la direction Nord-Sud. Cette symétrie correspond à celle qui avait été évoquée lorsque l’on a parlé des heures angulaires (la production sur une demi journée était analysée puis doublée). Il est aussi utile de noter que cet angle est compté positivement vers l’est (i.e. vers le matin).
Afin de recalculer cet angle en fonction du moment dans la journée, la formule suivante est utilisée

\[\sin(\phi) = \cos(\delta) \frac{\sin(H)}{\cos(\beta)} \]

Cependant, si cette expression est utilisée sans prendre de précautions, il est certain d’effectuer une erreur sur une partie de l’année puisque les azimuths calculés ne dépasseront pas 90°. Il faut rajouter une condition qui permet de prendre soit l’angle calculé en premier lieu, soit son supplémentaire, en fonction du jour de l’année. En été, par exemple, l’azimuth au lever (et au coucher) vaut en valeur absolue environ 123°. Une condition qui mène au calcul correct se base sur le signe de la déclinaison solaire.

Comme annoncé précédemment, il existe une symétrie par rapport au midi solaire mais elle ne peut plus être prise en compte une fois que la position des bâtiments dans l’espace et de l’ombre qu’ils génèrent sont prises en compte. C’est pourquoi, la première chose à faire est de casser cette symétrie dans le code afin de pouvoir considérer les angles \(\phi \) positifs et négatifs séparément.

2.2.1 Rupture de la symétrie

La manière d’opérer est assez simple. La boucle qui allait du midi au lever a simplement été recopiée en transformant la décrémentation du temps en incrémation de sorte qu’un calcul indépendant soit réalisé pour l’après midi solaire. Ainsi, il est possible de passer d’une courbe établie sur une demi-journée à une courbe relative à une journée complète comme l’indique la figure 11.
2.2.2 Détermination des ombres

Pour déterminer les ombres, il faut d’abord déterminer la position des bâtiments dans l’espace. Si, dans un premier temps, leur hauteur n’est pas prise en compte, chaque bâtiment peut être modélisé par un intervalle $\phi_2 - \phi_1$. Ensuite, pour tenir compte de leur hauteur, il faut introduire un angle β_{crit} en dessous duquel le β solaire calculé par EES ne peut pas descendre.

Comme l’indique la figure 12, l’angle β_{crit} est calculé grâce à la hauteur réelle du bâtiment h et grâce à X, la distance entre le capteur et le pied du bâtiment étudié. La distance intéressante est la distance dans l’alignement capteur-soleil si bien que X est une fonction de l’azimuth, de même que β_{crit}.

Pour déterminer cette valeur X, il a fallu se baser sur des mesures effectuées sur le terrain par satellite grâce à l’outil Google Earth. Evidemment, la mesure
pour tous les pas de temps n’a pas été réalisée mais les relations trigonométriques des triangles quelconques et plus particulièrement l’expression

\[\frac{\sin(A)}{a} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c} \]

ont permis d’obtenir une expression paramétrique dont le paramètre est l’angle \(\phi \).

![Figure 13 - Relations trigonométriques dans les triangles](image)

Enfin, il reste à déterminer \(\beta_{\text{crit}} \) par la formule triviale suivante

\[\beta_{\text{crit}}(\phi) = \arctg\left(\frac{h}{X(\phi)}\right) \]

2.2.3 Modélisation du capteur en un point

La méthode ayant été présentée, il faut aussi tenir compte du fait que les capteurs ne sont pas tous dans l’ombre ou tous dans la lumière. Cependant, en réduisant l’ensemble des capteurs à un seul point, comme il est fait jusque maintenant, le modèle n’est pas assez raffiné et cette nuance n’est pas apportée. Si \(\beta < \beta_{\text{crit}} \), la puissance fournie est nulle sur le pas de temps étudié. De même, le pas de temps n’est pas ajouté au total du temps d’éclairement calculé sur la journée alors qu’une partie des capteurs est peut-être soumise à l’irradiation.
Quoi qu’il en soit, l’étude porte d’abord sur un modélisation brutale à un point. Il est possible d’obtenir, en cas de bâtiment très mal placé, des courbes journalières telles que celle qui est présentée à la figure 14.

![Prise en compte de l’ombre](image)

Figure 14 – Ombre d’un bâtiment en pleine journée

Le travail est réalisé pour tous les jours de l’année si bien qu’une production électrique annuelle ajustée par la prise en compte de l’ombre peut être estimée.

L’idée de comparaison est de réaliser le procédé pour les six sites de sorte à déterminer lequel est le plus productif. Ainsi, selon l’hypothèse de modélisation par un point, certes relativement forte, les résultats obtenus sont représentés à la figure 15. Il faut savoir qu’à ce stade du travail, les collecteurs n’étaient pas encore commandés et que l’aire effective des collecteurs valait $71m^2$. Les capteurs finalement choisis ont, quant à eux, une surface totale de $62,4 \text{ m}^2$ ce qui va réduire la quantité d’énergie fournie à l’huile et donc au cycle ORC.

À partir des résultats obtenus, il vient que l’on peut éliminer les sites 2 et 4 qui semblent présenter les courbes de production les moins bonnes. En effet, comme on peut le voir en annexe, le site 2 est accolé à un bâtiment. Par conséquent, même si le soleil se lève à un azimuth plus grand (été), les capteurs seront toujours autant dans l’ombre. Cette remarque explique le palier que fait le site 2 sur le graphique de la figure 15. Pour ce qui est du site 4, il est entouré de bâtiments, certes relativement peu élevés, mais la gêne qu’ils entraînent est quotidienne au lever et au coucher.
Figure 15 – Résultats de la modélisation en 1 point
En ce qui concerne les quatre autres sites, les courbes s’entrecroisent et il n’est pas évident de savoir laquelle sous-tend la surface la plus grande. Cette surface correspond à l’énergie annuelle réellement produite. Ces intégrales, en quelque sorte, sont calculées et donnée dans le tableau 1.

<table>
<thead>
<tr>
<th></th>
<th>Site 1</th>
<th>Site 2</th>
<th>Site 3</th>
<th>Site 4</th>
<th>Site 5</th>
<th>Site 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensoleillement (heures)</td>
<td>3711</td>
<td>3274</td>
<td>3720</td>
<td>3368</td>
<td>3903</td>
<td>3951</td>
</tr>
<tr>
<td>Production (MWh)</td>
<td>11,96</td>
<td>10,48</td>
<td>11,95</td>
<td>11,42</td>
<td>12,23</td>
<td>12,33</td>
</tr>
</tbody>
</table>

Table 1 – Résultats numériques de la modélisation par un point

En ce qui concerne les sites 2 et 4, les impressions étaient justifiées. Pour ce qui est du site le plus favorable à accueillir les capteurs, le site 6 est indéniablement le meilleur. Ceci s’explique parce que les obstacles au lever et au coucher du soleil sont minimes, ce qui implique une durée d’ensoleillement plus grande. De plus, le seul bâtiment susceptible de gêner est le bâtiment situé au sud-est. Ce dernier n’a déjà plus d’influence au printemps puisque l’altitude du soleil \(\beta \) est déjà plus grande que \(\beta_{\text{crit}} \).

Le site 5 aurait pu convenir mais le long bâtiment près duquel il se trouve cache le soleil toute une partie de la matinée. La même remarque est applicable au site 1, situé à proximité d’un bâtiment relativement haut.

Enfin, le site 3 souffre aussi de la présence de l’ombre. D’une part, le gros bâtiment à l’est est gênant le matin. D’autre part, la soirée est fortement influencée par la présence des arbres à l’ouest.

Néanmoins, le travail ne s’arrête pas là. Il s’agit désormais de confirmer ces résultats en raffinant le modèle et ne considérant pas les capteurs à la fois tous dans l’ombre ou tous ensoleillés.

2.2.4 Modélisation du capteur en quatre points

Dans un souci de raffinement, le modèle à un point a été substitué par un modèle à quatre points d’une manière semblable à ce qu’indique la figure 16. Cela signifie que l’ensemble des mesures et calculs d’ombres est quadruplé. L’étude s’est limitée à ce modèle, les résultats étant à la fois plus précis mais d’un ordre de grandeur relativement semblable à la modélisation en un point (voir tableau 2). La remarque est peut être moins applicable aux sites 2 et 4 mais ceux-ci avaient été écartés pour des raisons évidentes. Une étude plus poussée aurait été superflu au vu du temps qu’il aurait fallu pour arriver à nos fins.
Comme précédemment, les quatre points ensoleillés correspondent à des capteurs qui ne subissent pas l’ombre tandis qu’aucun point ensoleillé correspond à une situation d’ombre totale. De manière intermédiaire, un seul point dans l’ombre équivaut à une production effective de 75 % de l’électricité productible. Logiquement, à deux points correspond 50 % de l’électricité maximale et à trois points, 25 %.

De manière similaire, les résultats obtenus sur une année selon ce modèle sont représentés aux figures 17.

Afin de ne pas se tromper en choisissant le site idéal à partir des graphiques, les données numériques sont données dans le tableau 2.

<table>
<thead>
<tr>
<th></th>
<th>Site 1</th>
<th>Site 2</th>
<th>Site 3</th>
<th>Site 4</th>
<th>Site 5</th>
<th>Site 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensoleillement (heures)</td>
<td>3678</td>
<td>3032</td>
<td>3679</td>
<td>3465</td>
<td>3850</td>
<td>3988</td>
</tr>
<tr>
<td>Variation (p.r à 1 pt)</td>
<td>0,38%</td>
<td>4,56%</td>
<td>0,99%</td>
<td>1,99%</td>
<td>0,99%</td>
<td>0,63%</td>
</tr>
<tr>
<td>Production (MWh)</td>
<td>11,91</td>
<td>9,99</td>
<td>11,83</td>
<td>11,65</td>
<td>12,11</td>
<td>12,41</td>
</tr>
<tr>
<td>Variation (p.r à 1 pt)</td>
<td>0,90%</td>
<td>7,41%</td>
<td>1,11%</td>
<td>2,87%</td>
<td>1,36%</td>
<td>0,93%</td>
</tr>
</tbody>
</table>

Table 2 – Résultats numériques de la modélisation par quatre points

2.3 Conclusions

Il ressort de cette étude que le site présentant le plus grand intérêt est le numéro 6 (représenté à la figure 18). Il est possible, par une première inspection, de vérifier
Figure 17 – Résultats de la modélisation en 4 points
la validité du modèle. En effet, il est aisé de constater que les zones critiques, à savoir le lever et le coucher du soleil (respectivement à l’est et à l’ouest), ne sont pas encombrées par la présence de bâtiments imposants. Quand le soleil est au sud, l’angle β qui caractérise son amplitude est le plus grand si bien qu’un bâtiment à cet endroit est moins susceptible de gêner. En général, les zones critiques sont le matin ou le soir.

![Image](image.png)

Figure 18 – Meilleur site par la modélisation à 4 points

Sans ombre, ce site présentait une production de 12,6 MWh pour une durée d’ensoleillement de 4150 h. Ces données correspondent aux données sur une année. Lorsque l’ombre est prise en compte et que le site est modélisé selon la méthode des 4 points, la production est de 12,4 MWh/an pour 4147 h/an d’ensoleillement. La prise en compte de l’ombre affecte donc relativement peu la production annuelle. Les pourcentages d’ensoleillement en terme d’heures et de production sont repris au tableau 3 (modélisation 4 points). Ces valeurs sont obtenus en divisant les résultats du tableau 2 par les valeurs obtenus sans ombre.
Tableau 3 – Pourcentage d’ensoleillement malgré l’ombre

<table>
<thead>
<tr>
<th></th>
<th>Site 1</th>
<th>Site 2</th>
<th>Site 3</th>
<th>Site 4</th>
<th>Site 5</th>
<th>Site 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensoleillement</td>
<td>88,7%</td>
<td>73,1%</td>
<td>88,7%</td>
<td>83,6%</td>
<td>92,8%</td>
<td>96,2%</td>
</tr>
<tr>
<td>Production</td>
<td>94,5%</td>
<td>79,3%</td>
<td>93,8%</td>
<td>92,4%</td>
<td>96%</td>
<td>98,4%</td>
</tr>
</tbody>
</table>

2.4 Un site supplémentaire, le site 7

Après avoir réalisé les divers calculs pour les six sites proposés, il a été décidé que ceux-ci seraient délaissés au profit d’un septième emplacement pour des raisons de sécurité et principalement de collaboration avec l’Université de Marseille. L’E.N.S.M de Marseille a dans un premier temps proposé le toit de l’un de ses bâtiments pour accueillir l’installation, ce qui aurait évidemment été une excellente alternative au vu de la réduction du nombre d’obstacles provoquant de l’ombre. Ce site a cependant été refusé puisque des pointes de vent peuvent atteindre 140km/h à cette altitude, ce qui mettait en péril la structure des collecteurs. Finalement, l’E.N.S.M a mis à disposition un autre site (représenté à la figure 19) en assurant que les arbres présents sur le terrain seraient abattus afin d’assurer un maximum d’ensoleillement à l’installation.

![Figure 19 – Site où aura effectivement lieu l’installation des capteurs](image)

26
2.4.1 Comparaison avec le site 6

Le site 6 est le site présentant les meilleures données d’ensoleillement et d’énergie électrique produite sur un an. Il est donc utile de le comparer avec les résultats obtenus pour le site définitif. Ceux-ci sont représentés à la figure 20.

<table>
<thead>
<tr>
<th>Production électrique (MWh)</th>
<th>Pourcentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>11,94</td>
<td>94,70%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ensoleillement (heures)</th>
<th>Pourcentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>3738</td>
<td>90,13 %</td>
</tr>
</tbody>
</table>

Table 4 – Synthèse des résultats du site 7

Le site final présente donc un ensoleillement annuel plus faible, passant de 3988 heures à 3738 heures, et une production d’énergie électrique annuelle de 11,94 MWh au lieu de 12,41 MWh. Ceci est évidemment dû à une disposition moins avantageuse des bâtiments vis-à-vis du site choisi initialement.
Figure 20 – Comparaison entre les sites 6 et 7
3 Étude sur la nébulosité

Dans ce projet, les hypothèses d’ensoleillement prises jusqu’à présent sont idéales. En effet, comme il a été présenté à la section 2, les valeurs d’irradiation solaire sont calculées à partir d’un modèle théorique, basé uniquement sur la position du soleil par rapport au site étudié. Cependant, comme tout modèle théorique, il ne colle pas toujours à la réalité, d’autant plus que ce dernier ne tient pas compte de la présence des nuages à certains moments de la journée. La nébulosité a comme conséquence de rendre le rayonnement direct diffus alors que les capteurs à concentration ne peuvent rediriger correctement que le rayonnement direct. Pour faire bref, le passage des nuages diminue l’irradiation solaire, ce qui diminue la puissance échangée à l’évaporateur de l’ORC et donc la production électrique.

Afin d’améliorer le modèle théorique établi pour qu’il s’approche de la situation réelle, les données d’irradiation directe par quart d’heure sur l’année 2005 à Marseille ont été prises en compte. L’idée est d’utiliser ces valeurs d’irradiation directement dans EES pour recalculer la production qu’il y aurait eue, en 2005, si la centrale avait été installée, dans l’état actuel du projet, c’est-à-dire sans inclure le modèle de stockage (l’aire de collecteurs est toujours erronée, à savoir 71m²)

Notons que pour certains jours de l’année (6 jours en août et 1 jour en novembre), l’irradiation reste inconnue car elle n’a pas été mesurée. Ainsi, l’ensoleillement a été considéré comme nul (et donc la puissance fournie nulle) et la puissance produite sur l’ensemble du mois pendant lequel est survenue la panne a été corrigée par une simple interpolation linéaire.

Cette configuration ayant été adoptée, il faut remarquer que la nébulosité n’est pas présente de la même manière tout le long de l’année. D’ailleurs, la figure 21 compare les valeurs théoriques d’irradiation et les valeurs de rayonnement direct mesurées sur le terrain lors de quatre jours répartis sur l’année.

Dans la suite du travail, la présence d’ombre est négligée pour les calculs.

Il est désormais possible de dégager un coefficient de rayonnement, lequel a pour but de corriger le modèle théorique de manière à ce qu’il coïncide avec les données relevées. Ce coefficient est donné par la relation

\[C = \frac{\text{Irradiation totale mesurée}}{\text{Irradiation totale calculée}} \]
Figure 21 – Comparaison entre le rayonnement calculé direct mesuré et calculé
Ce coefficient a été calculé pour plusieurs intervalles de temps. D’abord sur une année :
\[C_{\text{jan}} = \frac{8,235244}{12,03685352} = 0,684 \, \text{MWh/m}^2 \]

Ensuite de manière mensuelle comme le montre la figure 22.

![Coefficient C (par mois)](image)

Figure 22 – Calcul du coefficient C

Il ressort des données collectées que le mois de juin a été particulièrement peu nuageux, à l’inverse du mois de mars qui a souffert de beaucoup de nébulosité.

Pour bâtir un modèle un peu plus poussé, il faudrait récolter les données sur un ensemble d’années, les comparer et établir un modèle statistique de nébulosité sur l’ensemble de ces années. Cependant, seul un set de mesures est pris en compte dans ce projet si bien qu’il faut émettre l’hypothèse, avec les précautions que cela engage, que l’année 2005 est une année type du point de vue de la quantité de rayonnement direct parvenant sur Terre.

Il est dès lors possible de calculer la production électrique nette à partir des valeurs mesurées. De manière mensuelle, il est possible de comparer la production avec et sans nébulosité (figure 23).
De manière semblable à ce qui a été réalisé pour le rayonnement direct, il est possible de calculer un coefficient C' tel que

$$C' = \frac{\text{Production totale (irradiation mesurée)}}{\text{Production totale (irradiation calculée)}}$$

Sur un an, ce coefficient vaut

$$C'_{\text{an}} = \frac{9,160987816}{12,927199,8} = 0.709 \text{[MWh]}$$

Il est enfin aisé de calculer ce coefficient de manière mensuelle et de le superposer au graphique représentant le coefficient C chaque mois (figure 24). Il est donc possible de comparer les coefficients C et C'.

De ces différentes manipulations, plusieurs enseignements sont à tirer :

- Il n’y a jamais moins de rayonnement direct dans le modèle calculé que dans le modèle basé sur les mesures. Ceci est une condition nécessaire de validation du modèle théorique sans nuage.

- La nébulosité est moins présente en été qu’à tout autre moment de l’année.
Les coefficients de correction annuels $C_{1\text{an}}$ et $C'_{1\text{an}}$ ne sont pas tout à fait égaux. Il n’existe donc pas de relation linéaire entre production et irradiation directe. Cependant, et fort heureusement, les valeurs restent relativement proches.

Le coefficient C' est toujours inférieur au coefficient C à la même époque. Néanmoins, en sachant que le modèle ORC fonctionne à température de condensation constante tout le long de l’année, il convient de prendre ces résultats avec précaution. En effet, en hiver, la température de condensation, liée à la température ambiante, est inférieure. En conséquence, la pression au condenseur est également inférieure et la puissance produite par la turbine augmente (plus grand rapport de pression). Une seconde correction à apporter au modèle serait de faire varier la température extérieure et d’étudier son influence sur le rendement de la centrale.

En conclusion, un outil de correction des données, calculé pour modéliser une situation réelle, a maintenant été développé. Néanmoins, il faut rester conscient qu’une base de données d’une seule année n’est pas assez étoffée pour que le modèle, basé sur l’utilisation de coefficients, soit robuste. La même démarche doit être réalisée sur plusieurs années pour obtenir des plages de coefficient et une probabilité d’occurrence des situations nuageuses.
4 Système de stockage

4.1 Introduction à la problématique du stockage

Afin d’augmenter le rendement et la durée de fonctionnement de la centrale, il a été décidé de placer un système de stockage thermique. Celui-ci apportera une plus grande flexibilité et renforcera la fiabilité du système énergétique.

À l’heure actuelle, plusieurs types de stockage thermiques sont en plein développement. Les principales technologies rentrant dans le cadre du projet sont :

- Le stockage d’énergie thermique par chaleur sensible
- Le stockage d’énergie thermique par chaleur latente

Premièrement, le stockage par chaleur sensible a fait ses preuves depuis des milliers d’années. Il s’agit, par exemple, du simple fait de poser une pierre près d’un feu, de la déplacer et de profiter de la chaleur qu’elle restitue dans le temps ou d’une simple bouillotte. Il est donc principalement basé sur un stockage d’énergie par différents fluides (de l’eau, des huiles synthétiques, de la vapeur sous pression, des sels fondues,...) sans changement de phase.

Dans le cas d’une centrale thermodynamique, il s’agit de stocker la chaleur emmagasinée au cours de la journée d’ensoleillement. Le fluide caloporteur (qui transporte la chaleur) circule jusqu’à un échangeur thermique relié à un réservoir. Au coucher du soleil, le circuit s’inverse. Une illustration de ce procédé est présentée à la figure 25.

Deuxièmement, le principe du stockage d’énergie par chaleur latente basé sur le principe des sauts d’enthalpie liés aux transitions d’états : $H_{gaz} > H_{liquide} > H_{solide}$. Les différentes possibilités sont illustrées à la figure 26.

Un exemple courant de stockage d’énergie par changement de phase du matériau (MCP) est basé sur l’utilisation de la paraffine, passant d’un état solide à liquide lors d’un apport de chaleur. Placée dans une cuve de stockage sous forme solide à température ambiante, la paraffine est traversée par des tuyaux en cuivre dans lesquels circule de l’eau. Lorsque l’eau chaude arrive, elle se réchauffe et passe de la forme solide à liquide. À l’inverse, la paraffine va céder sa chaleur en se solidifiant.
Figure 25 – Stockage de chaleur sensible [11]

Figure 26 – Sauts d’enthalpie du stockage de chaleur latente [11]
à nouveau si l’eau froide (autour de 15°C) circule dans le tube.

Une installation classique consiste à placer le MCP dans un grand réservoir au milieu duquel passent des tubes pour transporter le fluide caloporteur. Le MCP et le fluide peuvent être différents suivant la production de chaleur qui y est associée, et donc la température ou quantité de chaleur à stocker. Une représentation du phénomène est donnée à la figure 27.

![Diagramme de stockage par changement de phase (MCP)](image)

Figure 27 – Stockage par changement de phase (MCP) [11]

Il est cependant évident que le premier critère de choix d’un MCP concerne la température de transformation puisqu’elle doit être conforme au procédé. Parmi tous les matériaux ayant une température de fusion acceptable, il est plus judicieux de choisir celui qui présentera la plus grande chaleur latente. D’autres critères très importants dans le choix des MCP sont aussi à considérer :

- Le coût : le choix ne sera pas le même en fonction de la quantité demandée
- La densité : un corps plus dense demandera un volume de stockage plus faible. Il faudra aussi s’intéresser à la variation de celle-ci lors du changement de phase
- La tension de vapeur : elle doit être la plus faible possible

36
- La dangerosité du produit : il est évident que l’utilisation de certains produits est soumise à des réglementations et normalisations qu’il est important de respecter
- La stabilité : dans le temps ou au cours de cycles fusion-cristallisation
- La surfusion : elle doit être de faible importance

Les critères de choix d’une technologie de stockage dépendent du besoin, auquel on associe un cahier des charges, des contraintes de réglementation, de coût et d’environnement... Le tout étant de retirer l’optimum technico-économique sur base de tous les éléments illustrés à la figure 28.

Figure 28 – Critères du choix d’une technologie de stockage [10]

Dans ce travail, il a été réalisé une comparaison des qualités et défauts des deux grandes classes de stockage (figure 29).

Sur base de ces critères et principalement du faible budget restant qui est accordé dans le cadre du projet, la méthode suivante semble la plus appropriée : le stockage d’énergie thermique par pebble-bed. Cette technologie est basée sur le principe su stockage d’énergie par chaleur sensible, moins cher, selon nos sources,
Figure 29 – Comparaison des deux grandes classes de stockage

que le stockage d’énergie par chaleur latente. Ce type de stockage sera accompagné d’eau sous pression faisant office de fluide transportant la chaleur libérée par ces pebbles. Le produit de la chaleur massique par la densité du pebble est supérieure aux autres technologies abordées. Le volume nécessaire pour stocker la même quantité d’énergie est donc diminué.

4.2 Description brève du modèle

Dans cette section va être développé un modèle de stockage thermique qui se met en route quand la valeur d’irradiation directe dépasse un certain seuil. Plus exactement, le système démarre quand la valeur de puissance échangée à l’évaporateur dépasse 26000 W. Cette valeur correspond à une puissance électrique fournie de 2500 W.

Afin de déterminer la puissance à l’évaporateur, sans stockage, on multiplie l’irradiation solaire par l’aire des capteurs et par le rendement des collecteurs, lequel est fourni par le constructeur. Ce rendement n’est pas une constante et dépend, entre autres, de la température moyenne de l’huile à l’intérieur des capteurs. Dans le modèle, il est cependant fixé à \(\eta_{col} = 0.645 \), valeur conservative, pour ne pas que le système soit trop optimiste. Par conséquent, si l’on calcule la puissance fournie
à l’évaporateur comme étant

\[\dot{Q}_{ev} = I_{Dn} A_{col} \eta_{col} \]

celle-ci sous-estimera, à certains moments, la quantité de chaleur qui sera réellement véhiculée dans la boucle chaude.

Suite à plusieurs discussions et en comparaison avec les systèmes de stockage existant sur des projets de plus grosse puissance, il a été décidé d’adopter la configuration représentée par la figure 30.

Figure 30 – Principe du système de stockage

Dans le modèle *sans stockage*, l’hypothèse suivante avait été adoptée. Le débit d’huile varie au niveau des collecteurs afin de toujours fixer la température à 175°C en sortie de ceux-ci. Dans le modèle avec stockage, cette hypothèse est conservée de manière à travailler à différence d’enthalpie constante entre l’entrée et la sortie de l’évaporateur de l’ORC. C’est la variation de débit qui donnera la variation de puissance échangée avec le cycle ORC.

Quand la puissance échangée dépasse la valeur consigne (26000 W), une vanne s’ouvre graduellement pour permettre au débit de se séparer en deux parties. La première va toujours échanger sa chaleur avec l’ORC, l’autre est envoyée vers le stockage thermique. En aval de celui-ci, il rejoint le fluide en sortie de l’ORC avant de repartir vers les capteurs solaires (figure 31).
Figure 31 – Principe du système de stockage

Quand la puissance échangée repasse sous la valeur de consigne, une vanne (plus de détails à la section 4.11 - Discussion sur la topologie) s’ouvre pour permettre à une partie du débit sortant de l’échangeur avec le cycle ORC de repasser dans le système de stockage sans passer par les capteurs. Une nouvelle fois, le débit passant par le déstockage est calculé de sorte qu’il apporte exactement le complément de puissance pour atteindre la valeur de référence. Ce déstockage a lieu tant que la température à l’intérieur du réservoir est supérieure à 100°C (figure 32). Ce paramètre sera optimisé dans la suite.

Enfin, il est possible que la quantité d’énergie déstockable soit supérieure au manque d’énergie durant la journée. Ceci a été pris en compte par une possible continuation du déstockage la nuit. Cependant, une fois que plus aucun débit ne repasse par les capteurs, le déstockage se fait rapidement puisqu’il n’existe aucun autre apport énergétique.

L’objectif du travail est multiple :

- Optimiser la température de consigne en dessous de laquelle le déstockage doit s’arrêter. En attendant, c’est la valeur fixée arbitrairement à 100°C qui est utilisée.
- Dimensionner le réservoir en terme de volume sachant que la technologie pebble-bed a été choisie. Au départ, de l’eau sous forme liquide sera utilisée et mise sous pression pour éviter tout changement de phase. Le volume du réservoir n’étant pas encore fixé, celui-ci variera d’un cas à l’autre de manière à montrer une manière de fonctionner ou une autre de notre modèle.

- Déterminer le gain en production qu’apporte le système de stockage par rapport à un système qui en est dépourvu.

Néanmoins, avant d’essayer d’optimiser un élément ou l’autre, il convient d’établir un modèle robuste et fiable du système de stockage.

4.3 Modélisation simple

Dans un premier temps, la sortie du capteur a été considérée à la même température que l’entrée de l’évaporateur ORC (pas de pertes dans les tuyaux) de même que l’entrée du stockage et que la sortie du déstockage. Les capteurs élevant idéalement la température de l’huile de 100°C à 175°C, la température évoquée dans la suite est de 175°C. De même, l’entrée des capteurs, la sortie de l’ORC, l’entrée du déstockage et la sortie du stockage ont été prises à 100 °C. A partir de cette grosse hypothèse, il est facile de calculer le débit à détournier.
Table 5 – Hypothèse principale de la modélisation simple

<table>
<thead>
<tr>
<th>Température</th>
<th>100°C</th>
<th>175°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sortie capteurs</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Entrée évaporateur ORC</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Entrée stockage</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Sortie déstockage</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Entrée capteurs</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Sortie évaporateur ORC</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Sortie stockage</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Entrée déstockage</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

4.3.1 Stockage

Dans le cas du stockage, il vient

\[
\dot{Q}_e > \dot{Q}_{e,lim}
\]

si bien qu’il faut stocker

\[
\dot{Q}_{sto} = \dot{Q}_{e,lim} - \dot{Q}_e
\]

en déviant le flux

\[
\dot{m}_{sto} = \frac{\dot{Q}_{sto}}{C_{p,oil}(T_{su,sto} - T_{ex,sto})}
\]

De cette manière, l’ORC travaille à flux constant lorsque la valeur de consigne est dépassée.

La quantité de chaleur globale stockée est quant à elle donnée par

\[
Q_{sto,tot} = \int \dot{Q}_{sto} dt
\]

La température du ballon est donnée par

\[
T_{tank}(t) = T_{tank}(0) + \frac{Q_{sto,tot}}{C_{tank}}
\]

où \(T_{tank}(0) \) est choisi arbitrairement à 25°C.
4.3.2 Déstockage

Dans le cas du déstockage, la même philosophie est reconduite. Si

\[\dot{Q}_{ev} < \dot{Q}_{ev,lim} \]

il est possible idéalement de déstocker

\[\dot{Q}_{desto} = \dot{Q}_{ev,lim} - \dot{Q}_{ev} \]

en déviant le flux

\[\dot{m}_{sto} = \frac{\dot{Q}_{desto}}{c_p Oil (T_{ex,desto} - T_{su,desto})} \]

Comme expliqué dans la présentation du modèle, cette opération est réalisée jusqu’à ce que la valeur de température à l’intérieur du ballon soit inférieure à 100°C.

La quantité globale de chaleur stockée devient

\[Q_{sto,tot} = \int \dot{Q}_{sto} dt - \int \dot{Q}_{desto} dt \]

La température du ballon est donnée par la même expression que précédemment.

\[T_{tank}(t) = T_{tank}(0) + \frac{Q_{sto,tot}}{C_{tank}} \]

Les graphiques obtenus ont été réalisés à partir d’une étude le 21 mai (et non en janvier ou en décembre) de manière à avoir assez d’ensoleillement pour pouvoir démarrer la procédure de stockage. En effet, il faut savoir que durant toute une partie de l’année, la quantité d’irradiation solaire n’est pas suffisante pour atteindre la valeur limite qui ouvre la vanne de stockage.

En 2005, il y aurait eu une période de 175 jours sur l’année qui aurait enclenché le système de stockage soit à peu près une demi année.

Sur la figure 33, il est possible de comprendre la philosophie du modèle tout en remarquant que ce dernier n’est pas abouti.

D’une part, il est mis en lumière que la production est limitée lorsque l’irradiation est trop forte (courbes rouge et bleue). Pendant ce temps, la température à l’intérieur du réservoir augmente de plus en plus jusqu’à atteindre un maximum, à l’instant charnière où le système passe de stockage à déstockage. D’autre part,
cette valeur de puissance électrique nette produite reste constante même pour $\dot{Q}_{ev} < \dot{Q}_{ev,lim}$ (la courbe rouge se prolonge). Le déstockage a dès lors lieu et joue son rôle.

Il est utile de noter que la partie hachurée aurait été gaspillée si le modèle de stockage n’était pas présent. En effet, des limitations technologiques du condenseur, des pompes et d’autres constituants de l’ORC en lui-même (on ne parle pas de la boucle chaude ici) empêchent le système de produire plus de 2500W.

Cependant, le modèle ne comprend pas encore un déstockage lorsque la valeur d’irradiation est nulle (nuit). De plus, la température du ballon n’est pas encore majorée par la valeur de 175°C qui est la température la plus chaude qu’il est possible de rencontrer dans le système (introduction d’un échangeur). Encore, les températures en entrée d’ORC lors du stockage et en entrée des capteurs lors du déstockage sont constantes, peu importe la température du flux qui vient se rajouter au cycle de départ. Enfin, il n’y a aucune perte à l’ambiance considérée si bien que la température dans le ballon reste constante toute la nuit.
4.4 Modélisation intermédiaire

Comme prouvé précédemment, il reste beaucoup de choses à prendre en compte. La première modification apportée fut le calcul de la température de l’huile après mélange. Le mélange de l’huile se réalise en aval de l’évaporateur lors du déstockage et en amont des capteurs lors du stockage.

\[
\begin{align*}
m_1, h_1 & \rightarrow \quad \text{mélange} \quad \rightarrow \quad m_3, h_3 \\
m_2, h_2 & \rightarrow
\end{align*}
\]

Figure 34 – Mélange des huiles à température différentes

<table>
<thead>
<tr>
<th>Cas</th>
<th>Sortie stockage</th>
<th>Sortie évaporateur ORC</th>
<th>Entrée capteurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cas 1</td>
<td>Sortie de stockage</td>
<td>Sortie capteurs</td>
<td>Entrée évaporateur ORC</td>
</tr>
</tbody>
</table>

Table 6 – Cas pour lesquels le modèle de mélange s’applique

Pour ce faire, il suffit de considérer la conservation d’énergie et la conservation de la masse. De manière générale

\[
\dot{m}_1h_1 + \dot{m}_2h_2 = \dot{m}_3h_3
\]

et

\[
\dot{m}_1 + \dot{m}_2 = \dot{m}_3
\]

Cependant, EES ne possède pas l’huile utilisée dans ce projet dans ses tables si bien qu’il faut calculer les enthalpies par conservation de la masse. Il suffit de se baser sur une référence \(h_0 = h_0(T_0) \) et calculer les différences d’enthalpie comme étant :

\[
\dot{m}_1c_p(T_1 - T_0) + \dot{m}_2c_p(T_2 - T_0) = \dot{m}_3c_p(T_3 - T_0)
\]

De plus, l’huile se mélange avec elle même. Puisque l’hypothèse de \(c_p \) constant a été prise dans ce modèle, l’expression se simplifie une première fois. Enfin, pour faciliter les calculs, il est utile de considérer arbitrairement \(T_0 = 0 \, ^\circ \text{C} \). Trivialement, il vient

\[
\dot{m}_1T_1 + \dot{m}_2T_2 = \dot{m}_3T_3
\]
Connaissant tous les débits (via la conservation de la masse), la température T_3 est facile à déterminer.

Ensuite, un échangeur de chaleur a été placé entre l’huile chaude et le réservoir de stockage. Cet échangeur a une efficacité et un ΔT_{min} au point de pincement. Dans cette application, l’efficacité utilisée est $\epsilon = 0.7$ et le $\Delta T_{\text{min}} = 5^\circ C$.

L’efficacité ϵ est définie comme étant

$$
\epsilon = \frac{T_{\text{in},1} - T_{\text{ex},1}}{T_{\text{in},1} - T_{\text{in},2}}
$$

et le ΔT_{min} comme une différence de température à prendre en compte dans l’échange puisque ceci correspond à la température minimale entre les fluides qu’il doit y avoir pour qu’un échange puisse se produire. La valeur de la différence de température au point de pincement (pinch point) est directement liée à la surface d’échange de l’échangeur.

Enfin, les pertes à l’ambiance sont considérées dans le système de stockage. Pour déterminer le coefficient de déperdition thermique du réservoir, il faut se baser sur le graphique de la figure 35. Celui-ci exprime le coefficient G, modélisant les pertes en fonction du volume du réservoir.

![Figure 35 – Détermination du coefficient de déperdition thermique du réservoir [8]](image)

Plus le volume augmente, plus le rapport surface sur volume diminue si bien que les déperditions volumiques diminuent. L’étude va se baser sur une isolation
moyenne. A cette étape de la modélisation, le volume du réservoir est inconnu. Ce travail de dimensionnement se réalisera en fin de modélisation.

En bref, un nouveau terme est à considérer, à savoir

\[\dot{Q}_{loss} = G \cdot V \cdot \text{ol.} \cdot (T_{tank}(t) - T_{ext}) \]

La quantité d’énergie stockée dans le ballon est désormais

\[Q_{sto,tot} = \int \dot{Q}_{sto}dt - \int \dot{Q}_{desto}dt - \int \dot{Q}_{loss}dt \]

A fortiori, quand il n’y a plus aucun stockage ou déstockage, la température dans le ballon diminue à cause de ces pertes.

A la figure 36, on observe le résultat de la modélisation intermédiaire. Lors de la première journée, il y a stockage d’énergie dans le réservoir, ce qui explique la croissance de la température de ce dernier (courbe verte). En fin de stockage, le système de déstockage ne se met pas en route car la température limite inférieure de déstockage n’est pas encore atteinte. Ensuite, on observe une légère décroissance de la courbe de température pendant la nuit. Cette décroissance correspond aux pertes présentées dans le paragraphe précédent. Le lendemain, le stockage se met en route pour les mêmes raisons mais cette fois, le déstockage se produit puisque la température du réservoir est supérieure à la température limite de déstockage. On remarque qu’à ce moment, le palier de production se prolonge. Le déstockage joue dès lors une nouvelle fois son rôle. Enfin, on remarque que le déstockage ne se poursuit pas une fois que le soleil est couché même si la courbe verte se trouve toujours au-dessus de 100°C.

Pour pouvoir mettre en évidence ces déperditions, le système a été modélisé sur deux jours. Il a fallu s’arranger pour que le volume soit suffisamment grand pour ne pas atteindre la température limite qui permet un déstockage (100°C) après le premier jour. Le diagramme de la température montre une légère pente descendante pendant qu’il n’y a ni stockage, ni déstockage. Lorsque le réservoir aura été dimensionné, il sera utile de déterminer combien de temps il faudra au réservoir pour refroidir jusqu’à la température ambiante.

Le modèle commence tout doucement à se rapprocher du comportement que le système aura en réalité. Cependant, il reste encore certains aspects à améliorer.
Figure 36 – Résultats de la modélisation intermédiaire
- La température calculée suite au mélange des huiles en entrée du cycle ORC (déstockage) n’a encore aucune influence sur la production. Bien qu’elle soit calculée, le modèle utilise toujours une température d’évaporation du cycle ORC constante alors qu’elle devrait diminuer avec la température de l’huile. La chute de température d’évaporation est sans aucun doute un facteur capital pour la production.

- Le déstockage ne se poursuit toujours pas la nuit, si il y a besoin. Cependant, au vu du peu d’énergie stockée (lié à la production faible et à la présence des nuages), il y a fort à parier que le déstockage nocturne sera relativement rare. Néanmoins, sa modélisation sera réalisée.

- La température extérieure reste constante toute l’année. Les conséquences d’un tel changement de température sont doubles. D’une part, la perte de chaleur au réservoir est moins importante quand la température extérieure est élevée. D’autre part, la température extérieure est liée à la température du condenseur du cycle ORC (condenseur à air). Cette température a une influence non négligeable sur la production. Elle fait varier la pression du condenseur et donc le rapport des pressions entre lesquelles travaille la turbine. Cependant, pour des raisons liées à des problèmes de convergence, cette tâche devra être réalisée lors d’un travail postérieur. Le sujet de ce projet reste uniquement lié à la boucle chaude.

4.5 Modélisation élaborée

La dernière étape de la modélisation consiste à intégrer l’influence de la température de l’huile en entrée de l’ORC. Comme expliqué précédemment, au départ, l’huile est à 175°C puisqu’elle vient directement des capteurs. Lors de la charge du réservoir, une partie du débit est déviée mais la température n’est pas altérée. Enfin, lors de la décharge, l’huile maintenue à 175°C et l’huile provenant du modèle de stockage est forcée à se mélanger (figure 31). Ainsi, la température en entrée d’évaporateur (côté huile) diminue et influence la température d’évaporation du fluide de travail.

La partie ORC du code travaillait jusqu’ici à température d’évaporation constante. Cette hypothèse se justifiait puisque la température d’entrée de l’évaporateur était, elle aussi, constante (175°C). En parallèle, la température de sortie de l’évaporateur était recalculée à chaque itération. La première étape des modifications a donc été de remanier le programme pour qu’il prenne la température de l’huile comme paramètre et pour qu’il recalculé la température d’évaporation à chaque fois, tenant compte des variations dues au mélange en amont de l’échangeur. En contrepartie,
il a fallu figer la température de sortie de l’huile, température que nous avons prise, avec raison, à 100°C et ce, après une recherche d’optimisation basée sur les limites des expanseurs réalisée dans un travail antérieur [4].

En plus, chose qui n’avait pas été réalisée auparavant car la boucle chaude n’était pas considérée, il a fallu modéliser l’évaporateur en lui imposant un pinch. Ce pinch a été fixé à 5°C. Pour comprendre le raisonnement, il est intéressant de regarder le diagramme T-h de la figure 37. En rouge, il s’agit de l’huile et en bleu, le fluide de travail du cycle.

![Figure 37 – Détermination du point de pincement](image)

Concrètement, le point de pincement peut se trouver à trois endroits différents. Cet endroit peut varier en fonction de la puissance échangée (pente de la courbe rouge variable) si bien qu’il faut absolument prendre en compte les trois cas :

- Lorsque l’huile rentre (h_3)
- Lorsque l’huile sort (h_1)
- Au début de l’évaporation (h_2)

La valeur du pinch est imposée au minimum des différences de température entre les courbes. Les températures à ces six points peuvent être trouvées à partir des données imposées et en égalant les enthalpies sur les trois zones.
Le modèle présente bien une température d'évaporation qui varie bien avec la température d'entrée de l'huile. Le diagramme exprimant cette variation est représenté à la figure 38.

![Diagramme de température d'évaporation en fonction de la température d'entrée de l'huile](image.png)

Figure 38 – Influence de $T_{oil, su}$ sur T_{ev}

Puisque la température d'évaporation est liée à la pression d'évaporation, une diminution de cette dernière a comme effet de réduire la production et par conséquent, il y a une baisse le rendement total du cycle comme l'indique la figure 39.

En conclusion, le rendement est réduit lorsque la chaleur du réservoir thermique est déstockée mais ce système permet tout de même de gagner de l'énergie par rapport à un système sans stockage car le système ne peut travailler qu'à une puissance maximale inférieure à la puissance de pointe et ce, pour des raisons de limitation du matériel. La différence est perdue sans le stockage.

La comparaison entre les résultats des modèles intermédiaire et élaboré met en avant une différence flagrante. Lors du déstockage, la production est désormais un peu inférieure à ce qu'elle était, pour des mêmes débits, à rendement constant lors du modèle intermédiaire. Cette constatation illustrée par la figure 40. Il est aussi
Figure 39 – Influence de $T_{out, su}$ sur le rendement du cycle ORC

 légèrement visible que le déstockage se produit un peu après le coucher du soleil jusqu’à ce que la valeur de la température du stockage passe sous les 100°C.

Une remarque intéressante à faire est qu’il est très difficile d’obtenir un palier plat au déstockage comme on l’avait obtenu lors de la modélisation intermédiaire. Essayer d’arriver à un tel palier en augmentant le débit au déstockage est une solution sans en être une puisque l’huile en entrée de l’ORC serait d’autant plus froide et le rendement d’autant plus faible. L’allure obtenue est donc tout à fait concluante.

4.6 Optimisation de la consigne de fin de déstockage

Jusqu’à présent, la température minimale du mélange dans le réservoir a été fixée à 100°C. Néanmoins, après quelques simulations, il est venu comme conclusion qu’il était préférable de considérer la température d’huile en entrée de l’évaporateur comme paramètre de consigne. En effet, seule cette valeur a une influence directe sur le rendement et sur la température d’évaporation.
Figure 40 – Résultats de la modélisation élaborée

Figure 41 – Comparaison des modèles
Cette constatation pousse le lecteur à retourner à la courbe de la figure 38 qui représente la température d’évaporation du cycle en fonction de la température d’entrée de l’huile. Si cette courbe ne commence qu’à une température d’entrée de 120°C, c’est parce que considérer des températures d’évaporation plus basses que 100°C est superflu compte tenu de ce qu’il vient d’être dit.

Néanmoins, de manière pratique, la production est possible tant que la température d’entrée de l’huile est supérieure à 120°C. En dessous de cette valeur référence, la situation n’est plus souhaitable puisque les courbes théoriques de la figure 37 tendraient à se croiser du fait que le palier se déplace vers le bas et vers la gauche du graphique.

Il est désormais clair que la nouvelle température de consigne est au minimum de 120°C. La question se pose de savoir si cette dernière doit être élevée ou non. Une élévation de cette dernière conduirait à une augmentation du rendement comme illustré à la figure 39. Cependant, pour ne pas laisser inutilisé une trop grande quantité de chaleur stockée, il convient de permettre au réservoir d’abaisser sa température le plus possible et ce, malgré les pertes en rendement que cela provoque.

La seule chose qu’il reste à faire pour valider cette hypothèse est de vérifier que la production en fin de déstockage est bien supérieure à la production sans le système de stockage. En effet, il se pourrait que l’ajout de chaleur soit neutralisé par la perte en rendement. Au cours des diverses simulations, les résultats étaient concluants. La baisse de rendement ne neutralisait pas l’ajout de quantité de chaleur.

<table>
<thead>
<tr>
<th></th>
<th>Modèle simple</th>
<th>Modèle intermédiaire</th>
<th>Modèle élaboré</th>
</tr>
</thead>
<tbody>
<tr>
<td>Déviation des débits</td>
<td>√</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Stockage + déstockage</td>
<td>√</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Pertes à l’ambiance</td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Mélange d’huiles à T diff.</td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Echangeur au réservoir</td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Echangeur à l’évaporateur</td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Variation de T_{ev}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Déstockage nocturne</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variation de T_{amb}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pebble-bed</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7 – Récapitulatif des différents modèles
4.7 Évolution des températures aux différents points de la boucle chaude

Comme il est visible sur la figure 43 qui illustre l’évolution des températures aux différents points de la boucle chaude, la température dans le ballon (courbe bleue) suit les mouvements de stockage et déstockage comme il l’a déjà été présenté précédemment.

A chaque fois que le stockage est activé, on voit que la température en entrée des capteurs augmente puisqu’au flux massique de 100°C vient s’ajouter un flux plus chaud, en sortie du stockage. Cette température est ramenée à 100°C quand la vanne de stockage se ferme. De son côté, la température en entrée de stockage est constante et vaut 175°C. Celle-ci n’est pas représentée sur la figure 43 par souci de
visibilité. La température de sortie (courbe mauve) est, quant à elle, croissante par morceaux puisque celle-ci suit l’allure de la température dans le réservoir. Les moments où le réservoir est soumis à un by-pass, la température n’est pas représentée.

Lorsque le déstockage est activé, la température de sortie du réservoir (de l’autre côté de celui-ci désormais) diminue assez rapidement. Cependant, cette température peut rester au-dessus de la température de consigne durant trois à quatre heures, en fonction des besoins énergétiques, pour autant que le réservoir soit bien chargé au départ. Cette décroissance en température a un effet direct sur la température en entrée de l’ORC comme l’indique la courbe verte. L’entrée des capteurs est toujours fixée à 175°C sauf quand le déstockage est activé où le mélange du flux en sortie des capteurs avec le flux froid provenant du réservoir fait chuter la température.

La température de l’huile en sortie de l’évaporateur a été supposée constante dans notre modèle et vaut 100°C. Cette température est identique en entrée de déstockage pour des raisons évidentes.

4.8 Dimensionnement du réservoir

Comme nous l’avons présenté à la section 4.1, le type de stockage qui a été choisi est un stockage du style ”pebble bed” (lit de galets). Pour rappel, ce système de stockage constitue un mélange eau-galet sous pression de manière à permettre à l’eau de rester sous forme liquide.

Le type de stockage ainsi que le volume choisi constituent deux paramètres importants dans le calcul de la capacité calorifique du réservoir. Plus particulièrement, on trouve

\[C = C_{gal} + C_{eau} \]

où \(C_i = m_i c_{pi} \). Cette formule est valable car l’hypothèse qu’il n’y a aucun changement de phase lors du stockage est réalisée. Pour confirmer cette hypothèse, la pression dans le réservoir est prise assez élevée pour qu’il n’y ait pas de problème.

L’étude sera basée sur des paramètres trouvés dans la littérature ([9], [10]). Ainsi, il vient, pour le galet :

- \(\rho = 6.92 \, g/cm^3 \)
- \(c_p = 0.9 \, kJ/kgK \)
- Fraction volumique : \(x_{gal} = 0.6 \)
Ensuite, il vient, pour l’eau :

- $\rho = 1 \text{ g/cm}^3$
- $cp = 4.186 \text{ kJ/kgK}$
- Fraction volumique : $x_{eau} = 0.4$

Ces valeurs de ρ et cp sont susceptibles d’évoluer légèrement en fonction de la température mais nous ne tiendrons pas compte de cet effet. L’effet de la pression est aussi important, sachant que celle-ci se situe aux alentours de 15 bars. Les valeurs ne changent néanmoins pas de manière significative à notre échelle de précision.

Au final, la capacité calorifique du réservoir est donnée par :

$$C = Vol(x_{eau}cp_{eau}\rho_{eau} + x_{gal}cp_{gal}\rho_{gal}) = 5,411 \times 10^3 \text{kJ/m}^3 \text{K}$$

A partir de maintenant, le seul paramètre qui caractérise le réservoir est son volume. Cette valeur de volume doit être suffisante pour ne pas remplir trop vite le stockage aux heures de fort ensoleillement.

Si l’on néglige les deux-trois premiers jours de l’année qui activent le stockage, il y a un moyen simple de réfléchir à comment déterminer le volume du réservoir. En effet, le déstockage peut se réaliser le jour lorsque $\dot{Q}_{ev} < \dot{Q}_{ev,lim}$ où bien lorsque le soleil est couché (\dot{Q}_{ev}). Lorsque ce dernier cas est rencontré, il est clair que le déstockage total pourra se réaliser bien avant le démarrage du stockage le lendemain.

En conclusion, si il est possible d’évaluer la température du réservoir lorsque la température de consigne de fin de déstockage est atteinte, il est également possible d’évaluer la quantité de chaleur que l’on doit pouvoir contenir dans le réservoir entre cette température limite inférieure du réservoir et la température maximale admissible physiquement (pincement pris en compte) : 170°C. A chaque jour de l’année, on pourra associer une quantité d’énergie à récupérer, pertes négligées. Cette quantité sera restituée avant le lendemain matin.

Du fait que la fin du déstockage ne se produit pas toujours lorsque le soleil est couché, la température d’entrée de l’évaporateur peut être supérieure à 120°C tandis que la température du réservoir lui est inférieure (cela dépend des débits mis en jeu). Par analyse des résultats obtenus lors des diverses simulations, on voit que la valeur de la température du ballon associée à la fin de déstockage varie entre 100°C et 120°C. Il est donc évident qu’on peut associer une valeur limite inférieure
moyenne $T_{tank} = 110°C$. Un ordre de grandeur du volume est donc désormais calculable à partir des données journalières de stockage.

Les résultats présentés dans le tableau 8 sont valables quelle que soit la valeur $Q_{ev,lim}$. Nous négligerons les pertes à l’ambiance dans le calcul qui va suivre car celles-ci sont sans grande influence. Le volume associé à la valeur du réservoir est défini par

$$Vol = \frac{Q_{sto,util}}{C(T_{max} - T_{min})}$$

où $Q_{sto,util}$ est la quantité de chaleur utilisable, $T_{max} = 170°C$ et $T_{min} = 110°C$ pour les raisons évoquées plus haut.

<table>
<thead>
<tr>
<th>$Q_{sto,util}(kJ)$</th>
<th>Volume du réservoir (m^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32466</td>
<td>0.1</td>
</tr>
<tr>
<td>64932</td>
<td>0.2</td>
</tr>
<tr>
<td>97398</td>
<td>0.3</td>
</tr>
<tr>
<td>129864</td>
<td>0.4</td>
</tr>
<tr>
<td>162330</td>
<td>0.5</td>
</tr>
<tr>
<td>194796</td>
<td>0.6</td>
</tr>
<tr>
<td>227262</td>
<td>0.7</td>
</tr>
<tr>
<td>259728</td>
<td>0.8</td>
</tr>
<tr>
<td>292194</td>
<td>0.9</td>
</tr>
<tr>
<td>324660</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 8 – Détermination du volume en fonction de la quantité de chaleur à stocker

Ces ordres de grandeur ayant été posés, il est désormais possible d’associer à chaque jour de l’année une quantité de chaleur à stocker dans le réservoir. L’année considérée est l’année 2005 de manière à ne pas surdimensionner le réservoir en négligeant la présence de nuages. En faisant l’hypothèse que la température a déjà été élevée aux alentours de 110°C (les premiers jours de stockage), les valeurs d’énergie stockée, par jour, de la figure 44 ont la même fonction que celles du tableau 8.
Figure 44 – Détermination du volume

A partir de cette figure, plusieurs conclusions sont à tirer :

- En 2005, environ une demi-année n’a pas nécessité de stockage thermique à cause des faibles rayonnements solaires durant cette période ($Q_{ev} < Q_{ev,lim}$).

- Sur l’autre demi-année, il y a des jours qui n’ont pas eu recours au stockage, à cause de la nébulosité.

- Le volume nécessaire pour ne jamais gaspiller de l’énergie parce que le réservoir est plein est $0.7m^3$.

- Près d’un tiers de la demi-année où l’on doit stocker nécessite au moins un volume de $0.5 m^3$. Si un réservoir d’une telle capacité est réellement conçu, le gaspillage sera considérable.

- Compte tenu du caractère optimiste de notre modèle (pas de pertes à l’ambiance considérées dans cette section), un volume de $0.6 m^3$ pourrait satisfaire
la demande en stockage.

Cependant, la discussion doit rester ouverte car la nébulosité de 2005 est peut être exceptionnelle par rapport aux autres années. De plus, un recalcul doit peut-être être réalisé si la valeur maximale de production fixée à 2500 W doit être modifiée suite à une analyse précise du modèle ORC. Enfin, n’oublions pas que nous ne nous soucions pas de l’influence de la température extérieure ($T_{cd} = 35^\circ C$ toute l’année) et que les pertes dans les tuyaux sont négligées.

4.9 Comparaison des résultats

De la section précédente, un ordre de grandeur du volume de stockage a été établi. On sait que celui-ci devra faire entre 0,5 et 0,7 m^3. Afin de déterminer quel volume est le plus susceptible d’être choisi, une simulation sur l’ensemble de l’année 2005 a été réalisée pour différentes valeurs de volume. Plus exactement, la simulation s’est réalisée sur la période où le stockage a réellement été activé soit du 13 avril au 16 septembre. C’est donc l’énergie produite pendant cette période qui est représentée, à la figure 45, en fonction du volume de stockage.

Pour les petits volumes, lorsque les réservoirs sont remplis, la différence d’énergie qui pourrait encore être stockée est jetée puisque non récupérable en pratique. Pour rappel, un des rôles du stockage est de récupérer l’énergie excédentaire qui serait gaspillée si il n’existait pas.

![Figure 45 – Energie électrique fournie en fonction du volume de stockage](image)

FIGURE 45 – Energie électrique fournie en fonction du volume de stockage
Les résultats numériques des différentes simulations sont donnés au tableau 5. On en déduit, en accord avec le graphique de la figure 45 que 0,6 m3 est le volume à choisir dans notre situation. Cependant, les différentes hypothèses réalisées durant la modélisation permettent de ne pas exclure les 0,5 et 0,7 m3 au cas où une étude plus poussée était réalisée.

<table>
<thead>
<tr>
<th>Volume (m3)</th>
<th>0</th>
<th>0,4</th>
<th>0,5</th>
<th>0,6</th>
<th>0,7</th>
<th>0,8</th>
<th>0,9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production (MWh)</td>
<td>3.885</td>
<td>4.106</td>
<td>4.129</td>
<td>4.136</td>
<td>4.135</td>
<td>4.120</td>
<td>4.104</td>
<td>4.042</td>
</tr>
</tbody>
</table>

Table 9 – Résultats numériques variation du volume de stockage

Si la quantité d’énergie produite diminue lorsque le volume diminue de trop, c’est qu’on ne peut pas récupérer assez d’énergie et que le gaspillage est trop grand. À la limite, on obtient la valeur 3.88 MWh (calculer la valeur sans stockage). De même, si le volume augmente de trop, la production diminue. Cela est dû à deux choses. La première est qu’il faut plus de temps pour charger le réservoir, cette énergie n’étant jamais réutilisée. D’autre part, la température moyenne dans le ballon est plus basse si bien que quand il y a déstockage, la température d’entrée de l’ORC est plus basse également. Le rendement du cycle est donc inférieur.

En conclusion, on voit que le stockage de 0.6 m3 épargne 4,136 − 3.885 = 0,521 MWh. Sur la période de stockage, cela correspond à une augmentation de production de 6,1%. Sur l’année 2005 en entier, l’augmentation est évidemment moindre et vaut 4,1%. En effet la production annuelle sans stockage vaut 6,167 MWh et, avec stockage, 6,418 MWh.

Ces résultats ne sont pas mirobolants mais le système de stockage sert au moins à vaincre le passage des nuages et récupérer un petit quelque chose en plus. Cependant, ceci était prévisible au vu de la relativement faible quantité d’énergie stockée chaque jour où il n’y a pas de nuage (aire hachurée de la figure 33). Lorsque les nuages sont présents, cette quantité diminue encore.

4.10 Étude de l’efficacité du stockage par rapport au passage des nuages

Maintenant que l’on sait que le rôle essentiel de notre stockage est avant tout d’éviter un arrêt et un redémarrage intempestif de la centrale pour cause de nuages, il est intéressant de voir combien de temps le système peut fournir de l’électricité
en absence d’ensoleillement. Pour quantifier cela, l’hypothèse très pessimiste qui associe une irradiation directe nulle au passage d’un nuage a été faite.

Par conséquent, si l’on décide de couper artificiellement l’irradiation à partir d’un moment bien précis, le temps durant lequel de l’électricité sera encore produite dépendra de la quantité d’énergie présente dans le réservoir. En d’autres termes, la durée qu’il faut pour décharger le réservoir est fonction de la température du réservoir en début de déstockage. Cette fonction est représentée sur la figure 46. Des essais ont été réalisés pour plusieurs températures de début de déstockage et, puisque l’on travaille par pas de 15 minutes, les résultats ont été interpolés par une droite de régression.

Figure 46 – Durée de déstockage en fonction de la température du réservoir en début de déstockage

Il est remarquable que le système peut au mieux fournir de l’électricité pendant 90 minutes après l’arrêt de l’irradiation. Un exemple où le temps de déstockage est tout de même de 75 minutes est donné à la figure 47. Rappelons qu’en pratique, si la diminution d’irradiation est uniquement due au passage d’un nuage, il se peut que ce soit passager. Dans ce cas, le passage d’un nuage n’arrête pas la centrale, ce qui arriverait sans le système de stockage (figure 48). Sur cette figure, la production
Figure 47 – Exemple d’évolution de la puissance après arrêt de l’irradiation
diminue tout de même mais de manière moins prononcée. Cette diminution vient
du fait que le rendement diminue avec la température d’entrée de l’huile issue du
mélange chaud - froid.

4.11 Discussion sur la topologie

Dans cette section, la discussion sera portée sur la dispositions des éléments
du circuit à réaliser en pratique de manière à pouvoir réaliser ce que le modèle
prédit. Comme il est bien connu désormais, le système se compose de plusieurs
configurations. Le jeu de vannes doit permettre au flux d’aller dans la bonne
tuyauterie au bon moment. En plus, l’huile doit être entraînée par une pompe
et les fortes différences de température nécessitent la présence d’un vase d’expan-
sion. Quelques clapets anti-retour et un by-pass au niveau de la pompe seront
également nécessaires mais ne sont pas représentés sur la figure 49.

4.11.1 Jeu de vannes
Figure 48 – Exemple d’évolution de la puissance après une diminution de l’irradiation

Figure 49 – Topologie de la boucle chaude
Les vannes dont nous aurons besoin pour le stockage sont de simples électrovannes et des électrovannes trois voies. Ces dernières étant relativement chères, une alternative sera présentée après la description des différentes configurations.

Configuration classique

Quand le stockage n’est pas activé, les vannes trois voies ne devient aucun flux et les deux électrovannes de part et d’autre du stockage sont fermées.

Stockage

Quand il faut commencer à stocker une partie de la chaleur, une partie du débit est déviée grâce à la vanne trois voies en sortie de capteurs. L’électrovanne en sortie du réservoir est ouverte pour rejoindre l’amont de la pompe.

Déstockage avec rayonnement solaire

Lorsqu’il faut déstocker, c’est la disposition opposée qui est adoptée. La vanne trois voies en sortie de pompe dévie une partie du flux vers le réservoir. Ce der-

Figure 50 – Jeu de vannes
nier revient en entrée d’évaporateur ORC en ouvrant l’électrovanne en sortie de déstockage.

Déstockage sans rayonnement solaire

Enfin lorsque le soleil a disparu (nuage épais, nuit), l’électrovanne en entrée de capteurs est ouverte tandis que la configuration des autres vannes est identique à celle adoptée lors du déstockage avec rayonnement solaire.

4.11.2 Alternative aux vannes trois voies

Il est tout à fait possible de réaliser une vanne trois voies à partir de deux électrovannes simples. Ces électrovannes sont placées comme l’indique la figure 51.

![Figure 51 – Alternative aux vannes trois voies](image)

En effet, on pourrait imposer un synchronisme d’ouverture des vannes de manière à ce que les deux électrovannes jouent le rôle d’une vanne trois voies. L’une se ferme pendant que l’autre s’ouvre. Le gain économique que cette méthode apporte peut être non négligeable.

4.11.3 Pompe et vase d’expansion

Pompe

La pompe est positionnée à cet endroit-là de manière à toujours permettre à l’huile de s’écouler dans le sens désiré. En effet,

- Lorsque le stockage est désactivé, la pompe crée un débit qui va de l’entrée des capteurs à la sortie du vase d’expansion.
- Lorsque le stockage est activé, ce débit a pour conséquence de bien faire circuler l’huile dans l’ORC et de la sortie des capteurs à la sortie du vase d’expansion.

- Lorsque le déstockage est activé, le différentiel de pression permet à l’huile d’aller vers l’ORC dans le bon sens et d’aller la sortie de la pompe à l’entrée de l’ORC.

Vase d’expansion

Le vase d’expansion est nécessaire dans un tel circuit car il permet de récupérer les variations de volume de l’huile avec la température. Pour ne pas que ce dernier se comporte comme un échangeur de chaleur efficace avec l’extérieur, il convient de l’isoler thermiquement et de le placer à l’endroit où l’huile est la plus froide, c’est-à-dire en sortant de l’ORC.
5 Mesures des grandeurs thermofluides

L’expérimentation est une des étapes essentielles de la modélisation de phénomènes divers et variés. Les mesures sont par conséquent indispensables pour la réception et la gestion énergétique des installations et/ou des équipements. Cependant, l’expérimentation coûte très cher du point de vue équipements et moyens humains à mettre en œuvre. Il est donc nécessaire de bien planifier les essais pour en tirer un maximum d’informations.

Cependant, afin d’assurer la justesse des résultats proposés, il est nécessaire d’insérer des capteurs en nombre suffisant. En effet, il est courant que des problèmes apparaissent lors du fonctionnement de la centrale ce qui pousse à faire des mesures redondantes tout en essayant de perturber au minimum le milieu. Un compromis doit être réalisé afin d’assurer la justesse des résultats tout en respectant le budget alloué à ces capteurs.

Le but de cette section est de répertorier le matériel à utiliser ainsi que, pour la plupart, les caractéristiques techniques correspondantes afin de justifier les différents choix (fonctionnement dans le domaine nominal d’emploi un maximum). Pour finir, il est utile de dresser un tableau reprenant les coûts d’utilisation.

Une représentation détaillée du banc d’essai est disponible à la figure 52.

![Figure 52 – Banc d’essai du labo](image-url)
5.1 Thermocouples

Au nombre de 13, les thermocouples sont de classe 1 (type T : Cu-Constantan) et permettent de mesurer la température à divers endroits du du banc d’essai. Il a été décidé de les placer à contre-courant et, dans la majorité des cas, dans les coudes des conduites de façon à éviter la conduction parasite. Ils disposent d’un intervalle de mesure de -40°C à 120°C, le tout avec une erreur n’excédant pas 1°C. Ils peuvent néanmoins travailler à de plus hautes températures en perdant quelque peu de leur précision.

![Figure 53 – Coude dans une conduite](image)

Quant à l’aérocondenseur, la température de sortie est évaluée par la valeur moyenne de deux thermocouples fixés dans la grille du ventilateur.

5.2 Pression

5.2.1 Pression absolue

La pression absolue est la pression qui utilise le vide comme point de départ de l’échelle. On ne peut avoir une pression inférieure à zéro puisque la pression du vide, qui est la plus basse pression existante, est de 101325 Pa. Il a été décidé d’utiliser 6 capteurs Keller (série 21Y) afin de mesurer la pression absolue sur le banc d’essais. Les caractéristiques sont reprises à la figure 3.
5.2.2 Pression différentielle

Cependant, comme il a été vu au cours d’Introduction à l’analyse numérique, il est préférable de disposer d’une valeur de pression absolue et d’une différentielle lorsque les deux mesures données par les capteurs de pression absolue sont proche l’une de l’autre. Les capteurs différentiels sont dotés de deux entrées de mesure et la tension qu’ils délivrent est proportionnelle à la différence de pression entre les deux entrées. De plus, il ne faut pas négliger la chute de pression dans chaque échangeur. Ceci explique donc l’intérêt porté à l’utilisation de 6 capteurs de pression Siemens (P250) dont les caractéristiques sont données à la figure 4.

<table>
<thead>
<tr>
<th>Location</th>
<th>Range [bars]</th>
<th>Acc. full scale [%]</th>
<th>Max dif P [bars]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump supply</td>
<td>[0;6]</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Pump exhaust</td>
<td>[0;50]</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Exchanger exhaust</td>
<td>[0;50]</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>1st expander exhaust</td>
<td>[0;10]</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2nd expander exhaust</td>
<td>[0;6]</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Pump suction (oil side)</td>
<td>[0;6]</td>
<td>1</td>
<td>12</td>
</tr>
</tbody>
</table>

Figure 55 – Caractéristique capteur Siemens

5.3 Débitmètres

Les débitmètres permettent de mesurer les flux d’huile et de réfrigérant. Pour ce dernier, il faut réaliser une mesure très pointue du flux car celui-ci influence l’ensemble des résultats.
5.3.1 Huile

Pour l’huile, un compteur d’eau Actaris MTWH est utilisé. Il est composé de jets multiples qui sont injectés à travers des ports délimitant une chambre interne sur une roue à aubes. IL est alors possible de déterminer la vitesse du fluide qui est en corrélation avec la vitesse de rotation des aubes.

L’appareil de mesure présente des limites d’utilisation dont il faut tenir compte afin de s’assurer de l’exactitude de mesures. La pression maximale d’utilisation se situe à 16 bars et la température à 110°C. La mesure du flux est réalisée en mesurant le volume d’huile qui passe dans le compteur sur une période de 120 secondes.

5.4 Wattmètre

4 wattmètres Gossen A2000 vont être utilisées pour mesurer la puissance produite par les expansieurs, la consommation de la pompe et la consommation du ventilateur de l’aérocondenseur. Il faut impérativement veiller à placer les wattmètres avant le régulateur de fréquence afin de se prémunir contre les erreurs de mesure. En effet, Il pourrait y avoir des problèmes si la fréquence sort de la plage de fréquence autorisée. La puissance est calculée sur base du courant et de la tension de chaque phase.

5.5 Indicateur de niveau

Un indicateur de niveau est un appareil simple et robuste permettant de donner le niveau des liquides. Il est équipé d’un flotteur qui suit les variations du liquide
et les transmet à des volets basculants par couplage magnétique. Un exemple est donnée à la figure 57.

De manière plus artisanale, il est également possible d’en relier le haut et le bas du réservoir par un tuyau transparent. A l’intérieur de ce tuyau, le niveau du liquide suit celui qui se trouve à l’intérieur du réservoir.

![Figure 57 – Indicateur de niveau](image)

5.6 Pyrhéliomètre

Cet instrument est nécessaire afin de mesurer l’intensité du rayonnement solaire direct. La lumière du soleil pénètre dans l’instrument par une fenêtre et est ensuite dirigée sur la thermopile peinte en noire, donc très absorbante, montée sur un système de suivi afin de ne capter que le rayonnement solaire direct, qui convertit la chaleur en un signal électrique qui est enregistré. Celui-ci est ensuite converti en une mesure équivalente exprimée en watts par mètre carré.

Celui qui est utilisé pour réaliser les mesures de notre centrale est représenté à la figure 59. Il s’agit du STG2-axis pyrhieliometer with Licor-200 coutant environ 1340€.
5.7 Acquisitions des données

Il faut également utiliser le CompactRio afin de compléter la palette de données. Le système CompactRio associe une architecture ouverte embarquée de petite taille où on peut y placer des modules d’E/S échangeables à chaud. Les modules suivants vont y être ajoutés :

- NI9213 : Module permettant de connecter les thermocouples. Il converti le signal d’entrée directement en température. Il est également capable de compenser les erreurs d’offset.
- NI9401 : Module permettant d’avoir des signaux digitaux. Il peut produire un signal 0V (false) / 5V (true).
- NI9205 : Module d’entrée analogique. Il est capable de lire une tension jusqu’à 10 V. Il est utilisé pour les capteurs de pression, les mesures de flux et de puissance. Ils envoient un signal de 4 à 20 mA à une résistance de 100 ohms et le module peut alors déterminer la tension.
- NI9265 : Module permettant qu’un signal analogique soit envoyé à un dispositif de contrôle comme un convertisseur de fréquence.
5.8 Système de suivi solaire

Afin de bénéficier au maximum des possibilités de notre central, un système de suivi Est-Ouest a été choisi. En effet, celui-ci, permet de capter une plus grande énergie solaire étant donné que l’aire sous la courbe est plus grande. Ceci est illustré à la figure 61.

![Figure 61 - Ensoleillement capté sur une journée](image)

Afin de suivre le mouvement du soleil, le tracking installé dispose d’une précision allant jusqu’à 0.5° près.
5.9 Inclinomètre

Un inclinomètre (Figure 62) est un capteur servant à mesurer des angles par rapport à la ligne d’horizon (ou horizontale). Celui dont les collecteurs solaires disposent est d’une précision de 0.1°.

Il existe plusieurs types d’inclinomètre. Le premier est un pendule simple. Dans ce type de configuration, l’inclinomètre est un capteur passif où une aiguille solidaire au pendule indique l’inclinaison en glissant sur un cadran. Il s’agit d’une technologie qui ne nécessite pas d’apport d’énergie externe mais dont la précision est relativement faible. Il existe également des inclinomètres au silicium. Ils sont dotés d’une électronique de conditionnement du signal et d’un élément sensible (système micro usiné sur silicium). Cet élément sensible est équipé d’un peigne capacitif qui se déforme à cause de la gravité. Ce type d’instrument est peu cher mais de précision moyenne (surtout aux alentours de 90 degrés). Enfin, il existe aussi des inclinomètres à pendule asservi. Ce système mécatronique présente une très bonne précision (excepté aux alentours de 90 degrés) mais un prix assez élevé.

Figure 62 – Inclinomètre
5.10 Anémomètre

Un anémomètre est un instrument permettant de mesurer la vitesse ou la pression du vent. Il existe néanmoins une relation qui lie vitesse et pression. De ce fait, un instrument prévu pour un type de donnée sera capable de fournir les deux. Grâce à celui-ci, une mesure des conditions climatiques liées au vent pourra être fournie avec précision.

Il existe différents types d’anémomètre :

- Anémomètre à coupelles (dit de Robinson)
- Anémomètre à hélice
- Anémomètre à ultrason
- Anémomètre à plaque
- Anémomètre à boule
- Anémomètre à boule
- Anémomètre à tube
- anémomètre à tube de Pitot
- Anémomètre à fil chaud

Figure 63 – Anémomètre
5.11 Placement des instruments de mesure

Reprenons à présent les éléments présentés dans l’ordre et incorporons-les sur le schéma de notre boucle chaude.

Les thermocouples, relativement peu coûteux, sont situés à tous les points où la température peut varier. Il y en aura :

- De part et d’autre des collecteurs
- De part et d’autre du stockage
- De part et d’autre de l’évaporateur, côté huile
- Dans le réservoir

Les capteurs de pression sont situés de manière à mesurer les pertes de charge dans le système de stockage et aux collecteurs. Pour des raisons de précision, la mesure se réalise par l’intermédiaire d’un capteur de pression absolue et un capteur de pression différentielle.

Les débits sont mesurés en deux points. Le premier se situe en sortie de l’évaporateur et le second en entrée des capteurs. Ces zones particulières sont sélectionnées car la température y est moins importante et il les appareils coûtent moins chers. Ensuite, par conservation de la masse, on peut retrouver le débit passant dans le système de stockage.

Un indicateur de niveau est placé au vase d’expansion pour des raisons évidentes.

L’anémomètre, l’inclinomètre et pyrhéliomètre sont placés au niveau des collecteurs.

Un wattmètre est placé au niveau de la pompe pour mesurer sa consommation en temps réel.
FIGURE 64 – Placement des capteurs
6 Perspectives et conclusions

Durant ce travail, le problème de la modélisation de la boucle chaude a été abordé. Suite à des limitations provenant du cycle de Rankine organique, l’idée de dimensionner un système de stockage thermique a été soumise. Ce dimensionnement est désormais réalisé mais certains aspects rencontrés en réalité n’ont pas été pris en compte lors des diverses simulations. Cependant, ce travail a donné naissance à des premiers résultats cohérents sur lesquels il sera utile de se baser dans les travaux futurs.

De plus, une approche méthodique basée sur une étude de la topologie des bâtiments a été établie de manière à prendre en compte l’ombre des bâtiments dans les calculs.

Une autre approche, tout aussi méthodique, basée sur des relevés de données météorologiques, a permis d’estimer l’influence des nuages sur la productivité de la microcentrale.

Cependant, de manière à modéliser mieux encore la microcentrale et de manière à faire de ce projet une réussite, les perspectives de travail sont les suivantes :

- La prise en compte d’une température ambiante variable lors de la modélisation
- La validation de la partie ORC du système grâce à des mesures
- Une modélisation plus poussée des collecteurs en terme de déperditions thermiques et pertes de charge.
- La prise en compte des pertes dans les tuyauteries
- L’installation du système à Marseille
- La validation complète de la microcentrale une fois qu’elle sera installée.

Ce projet novateur où la contribution des étudiants est bien réelle est sur la bonne voie. La microcentrale Sun2Power va bientôt voir le jour. Que ce projet en amène d’autres, tout aussi innovant et enthousiasmant !
7 Références

7.1 Bibliographie

7.2 Webographie

80